Invertible commutativity preservers of matrices over max algebra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvectors of interval matrices over max-plus algebra

The behaviour of a discrete event dynamic system is often conveniently described using a matrix algebra with operations max and plus Such a system moves forward in regular steps of length equal to the eigenvalue of the system matrix if it is set to operation at time instants corresponding to one of its eigenvectors However due to imprecise measurements it is often unappropriate to use exact mat...

متن کامل

On Some Properties of the Max Algebra System Over Tensors

Recently we generalized the max algebra system to the class of nonnegative  tensors. In this paper we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverse of tensors is characterized. Also we generalize the direct product of matrices to the direct product of tensors (of the same order, but may be different dimensions) and i...

متن کامل

Invertible and Nilpotent Matrices over Antirings

Abstract. In this paper we characterize invertible matrices over an arbitrary commutative antiring S with 1 and find the structure of GLn(S). We find the number of nilpotent matrices over an entire commutative finite antiring. We prove that every nilpotent n×n matrix over an entire antiring can be written as a sum of ⌈log2 n⌉ square-zero matrices and also find the necessary number of square-zer...

متن کامل

Rank and Perimeter Preserver of Rank-1 Matrices over Max Algebra

For a rank-1 matrix A = a ⊗ b over max algebra, we define the perimeter of A as the number of nonzero entries in both a and b. We characterize the linear operators which preserve the rank and perimeter of rank-1 matrices over max algebra. That is, a linear operator T preserves the rank and perimeter of rank-1 matrices if and only if it has the form T (A) = U ⊗ A ⊗ V , or T (A) = U ⊗ A ⊗ V with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 2006

ISSN: 0011-4642,1572-9141

DOI: 10.1007/s10587-006-0087-4